Entradas

Estudio de propiedades magnéticas de materiales mesoscópicos

En el marco del “Ciclo de entrevistas a Investigadores/as directores/as de Proyectos/Laboratorios de la Facultad” hoy dialogamos con el Dr. Federico Romá, director del Proyecto “Materiales magnéticos desordenados y nano-estructurados de tamaño mesoscópico” del Departamento de Física.

¿Qué investigaciones se realizan desde el Proyecto que dirige en la UNSL? 

Nuestro proyecto de investigación se enfoca en estudiar las propiedades magnéticas de materiales “mesoscópicos”.  Estos sistemas tienen dimensiones que los sitúan en un punto intermedio entre el nivel macroscópico, el cual está bien descrito por la física clásica, y el nivel atómico, el cual está dominado por los fenómenos cuánticos.  Un ejemplo de ello son los nano-tubos o nano-hilos que hoy en día se pueden sintetizar a partir de diferentes tipos de materiales magnéticos.  

En nuestro grupo realizamos estudios tanto experimentales como de simulación.  En los experimentos empleamos micro-sensores para medir las propiedades magnéticas de este tipo de sistemas.  En particular, bajo el microscopio y usando un micro-manipulador hidráulico, una muestra es depositada sobre un micro-sensor y todo el conjunto (el micro-sensor y la muestra) es enfriado cerca del cero absoluto (hasta una temperatura de aproximadamente 4 Kelvin) y sometido a un campo magnético intenso.  Los resultados que se miden son comparados con aquellos que se calculan usando simulaciones micro-magnéticas de modelos complejos.  Esto permite obtener información sobre fenómenos que no son posible medir directamente.

Adicionalmente, en el proyecto se diseñan y prueban nuevos tipos de micro-sensores con los cuales se están intentando realizar mediciones más precisas y detalladas de las que se pueden efectuar hoy en día.

¿Puede describir las escalas a las que trabajan?

Las muestras que estudiamos suelen tener al menos una dimensión del orden de unos pocos nanómetros, mientras que las otras longitudes características pueden ser aún mayores, del orden de unos micrómetros.  Por ejemplo, unos nano-tubos granulares de manganita que hemos podido medir recientemente están constituidos por nano-partículas cuyos diámetros rondan los diez nanómetros.  Estas nano-partículas se aglomeran para formar las paredes del nano-tubo, las cuales son muy delgadas.  Sin embargo, la longitud total de este arreglo puede alcanzar los diez micrómetros. 

A su vez, los micro-sensores tienen dimensiones micrométricas.  Por ejemplo, los micro-sensores Hall y los micro-osciladores mecánicos de silicio que usamos tienen longitudes características que alcanzan unas pocas decenas de micrones.       

¿Cualés investigadores forman parte del Laboratorio de bajas temperaturas y desarrollo de sistemas micromecánicos?, ¿En este Laboratorio realiza investigación teórica, experimental o ambas?

En el proyecto tenemos la infraestructura y los recursos humanos especializados necesarios para realizar este tipo de estudios. La Dra. Moira Dolz, co-directora del proyecto, es la responsable de la realización o supervisión de los experimentos científicos. El Ing. Carlos Devia, profesional de CONICET que pertenece al grupo, presta apoyo técnico para que estas tareas se puedan realizar eficientemente.  Además, el Ing. Sergio Calderón Rivero, quién está finalizando su Doctorado en Física, logró diseñar y probar un nuevo micro-magnetómetro de gradiente de campo.  Recientemente, también empezamos a colaborar con el Dr. Marcelo Nazzarro con la idea de usar esta misma tecnología para estudiar el proceso de adsorción en muestras microscópicas.  Finalmente, yo soy el responsable y por ahora el único miembro del grupo que realiza cálculos micro-magnéticos y simulaciones de Monte Carlo para estudiar modelos complejos de sistemas magnéticos.       

¿Cuál es el equipamiento necesario para llevar adelante sus investigaciones?, ¿Está disponible en el INFAP o UNSL?

Para realizar los experimentos usamos una variedad de equipos.  Empleamos un micro-manipulador hidráulico para mover y depositar las muestras sobre los micro-sensores.  Este procedimiento se realiza bajo un potente microscopio óptico de 500x.  El micro-sensor con la muestra se introducen  luego en un crio-generador de helio de ciclo cerrado que permite equilibrar al sistema en un rango que va desde los 4 Kelvin hasta temperatura ambiente.  Simultáneamente, usando un electroimán se aplica un campo magnético estático de hasta medio Tesla.  La excitación de los micro-sensores se realiza empleando diferentes equipos electrónicos, mientras que la detección de la señal que producen es medida con un amplificador lock-in.  Parte de este proceso de medición fue automatizado, por lo que es posible realizar experimentos de larga duración (algunos demoran días) que son controlados por una computadora. 

Las simulaciones que realizamos en general son cálculos micro-magnéticos que efectuamos con códigos computacionales propios escritos en lenguaje C++. Estos programas se corren en un cluster de computadoras de nuestra universidad que se denomina BACO.  El cluster posee una gran cantidad de nodos que son administrados por un sistema CONDOR bajo linux, lo que permite alcanzar un nivel de eficiencia muy alto. 

La física es un terreno fértil desde donde entusiasmar a muchos jóvenes, a la hora de elegir una carrera ¿Qué puede decirnos sobre las posibilidades de divulgación científica que tiene la física?

Lo que más atrae a los jóvenes es la parte experimental.  Asistir a la realización de un experimento tiene un impacto duradero en ellos.  En este sentido, nuestro grupo participó varias veces en este tipo de actividades.  Recientemente, la Dra. Moira Dolz dio una charla en un colegio primario donde realizó algunos experimentos simples de magnetismo y el entusiasmo de los niños fue notorio.  Estas mismas experiencias son mostradas casi todos los años a chicos de secundaria que visitan nuestra universidad.  Además, Moira dicta frecuentemente un taller para los ingresantes a la Licenciatura en Física.  Finalmente, también como grupo recibimos alumnos de grado de la Universidad de Cuyo que están cursando las últimas materias de carreras con orientación científica, quienes pasan una semana en San Luis participando de los experimentos que se realizan en nuestro laboratorio.

¿Cómo nació su vocación?, ¿Cuáles fueron sus primeros pasos por la física y cuál es su experiencia como docente-investigador, su trayectoria por la FCFMyN y la UNSL y CONICET?

No recuerdo exactamente cómo nació mi vocación por la física.  Sí, tengo presente que desde muy joven, durante mi niñez en Mendoza, empecé a sentir una gran curiosidad por los temas científicos.  Y no me interesaba algo en especial; todo me parecía muy interesante y devoraba lo que tenía a mano: miraba los pocos documentales que pasaban por la televisión y releía varias veces los libros o enciclopedias que me compraban mis padres.  No había mucho de ciencia alrededor y menos en la escuela a la que asistía. 

Luego en 1992 empecé a estudiar aquí en San Luis la Licenciatura en Física.  Los primeros años de estudio fueron realmente muy felices, pues por primera vez me podía dedicar de lleno a una actividad que me apasionaba.  Por supuesto, el paso de los años me obligó, como a todos, a poner los pies sobre la tierra.  En mi caso, afortunadamente, ese proceso de crecimiento sirvió para modelar ese idilio inicial, sin llegar a matar mi amor por la profesión.  Como docente e investigador cada vez que me siento a estudiar, a resolver un problema de física o a dictar una clase, me es posible revivir brevemente esa satisfacción que sentía cuando era joven y aprendía algo nuevo e interesante casi todos los días.    

¿Tiene algún próximo objetivo por alcanzar?

Actualmente mi esfuerzo está puesto en consolidar a largo plazo el grupo de investigación.  La ambición es mantener un ambiente de trabajo cordial y, a la vez, científicamente sólido, que ayude a que cada uno de nosotros pueda crecer profesionalmente.  Siendo que gran parte de nuestra labor es experimental, y que mantener tal actividad es costoso y muchas veces hasta frustrante (hay veces que los experimentos pueden llegar a ser difíciles de realizar), el crecimiento del grupo fue lento aunque afortunadamente nunca detuvo. 

¿Cuál es el grado de cooperación interinstitucional con laboratorios e investigadores de otras instituciones de la Argentina y del mundo?, ¿Con cuáles?

Las características de nuestra actividad científica nos facilita e incluso nos obliga a cooperar con otros investigadores.  Por ejemplo, muchas de las muestras magnéticas que estudiamos son o fueron en algún momento sintetizadas por otros grupos (por ejemplo de la Universidad Nacional de Córdoba, del Centro Atómico Constituyentes o del Centro Atómico Bariloche) que se especializan en diferentes procesos de fabricación.  Debido a que el tipo de mediciones y simulaciones que realizamos en nuestro laboratorio no están disponibles en la mayoría de las instituciones del país, la colaboración con estos proyectos conduce a beneficios mutuos.

Adicionalmente, y gracias al asesoramiento técnico del Dr. Hernán Pastoriza del Centro Atómico Bariloche, el Ing. Sergio Calderón pudo diseñar un nuevo micro-magnetómetro de gradiente de campo.  El principal problema con este tipo de desarrollos es que la fabricación de tales dispositivos es muy costosa.  Afortunadamente, a través de una colaboración con el Dr. Daniel López, egresado de nuestra Universidad que actualmente es Profesor de Penn State University, EEUU, hemos podido llegar a fabricar un primer diseño que ya fue probado. 

Recientemente establecí una colaboración con la Dra. Leticia Cugliandolo de la Universidad Pierre et Marie Curie de París, Francia, y con el Dr. Eduardo Bringa y el Dr. Gonzalo Dos Santos de la Universidad de Mendoza, Argentina.  En particular, desde mi modesta experiencia en la temática estoy ayudando a Gonzalo a realizar simulaciones realistas de sistemas magnéticos nanoscópicos (simulaciones en donde la dinámica molecular de la red está acoplada a la dinámica micro-magnética de los espines atómicos).        

Si su grupo de investigación realiza una mirada en retrospectiva, ¿Surgen nombres de referentes destacados (nacionales y/o internacionales) que desean reconocer por la contribución que hicieron al desarrollo de la ciencia y en la formación de investigadores de la Facultad?

Son numerosos los investigadores e investigadoras tanto del Departamento de Física y del Instituto de Física Aplicada de San Luis, como de la División de Bajas Temperaturas y el Grupo de Teoría de Sólidos del Centro Atómico Bariloche, que nos brindaron su apoyo científico para que hoy podamos estar acá. Por supuesto, están todos aquellos que de una u otra forma nos enseñaron a trabajar en ciencia, o que en su momento nos dieron una cuota de confianza o un impulso para que podamos avanzar con nuestras carreras científicas. El aporte de cada uno de ellos, haya sido grande o pequeño, sin duda fue fundamental.

Dada la temática en la que trabajamos, en especial quisiera mencionar al Dr. Hernán Pastoriza del Centro Atómico Bariloche, quien nos aportó toda su experiencia y puso a nuestra disposición todo el instrumental que hemos necesitado para avanzar con nuestras investigaciones científicas.  Sin esta ayuda, hubiese sido casi imposible instalar un laboratorio de bajas temperaturas en nuestra Universidad.

También quiero reconocer el apoyo de la Universidad Nacional de San Luis, del CONICET y del Ministerio de Ciencia y Tecnología de la Nación, que a través de diferentes proyectos financiaron la construcción y la adquisición del instrumental científico con el que cuenta nuestro laboratorio.  

Nuevo egresado de la “Maestría en Enseñanza en Escenarios Digitales”

Se llevó a cabo una nueva defensa de Trabajo Final Integrador por parte del Ing. Martín Garciarena Ucelay correspondiente a la “Maestría en Enseñanza en Escenarios Digitales”, carrera de posgrado interinstitucional por siete universidades nacionales: del Comahue, de Cuyo, de Chilecito, de La Pampa, de la Patagonia Austral, de la Patagonia San Juan Bosco y de San Luis.

Su trabajo se tituló “Ingreso virtual, una propuesta didáctica para el curso de ingreso de matemática para la FCEJS de la UNSL”. El mismo fue dirigido por la Mgtr. Paola Allendes Olave.

El jurado estuvo conformado por el Mgtr. Luis Lara, la Mgtr. Alejandra Sosa y la Dra. Cecilia Montiel.

Cabe mencionar que la Maestría es la primera carrera de posgrado de la Facultad que comenzó a dictarse bajo la modalidad a distancia en el año 2017.

A continuación, compartimos la entrevista al nuevo Magíster:

¿Por qué razones eligió cursar su carrera en la Facultad?

La carrera aborda campos educativos de gran interés, especialmente los de “Tecnología Educativa” y “TIC en las instituciones educativas y en las aulas”. Considero que son demandados en la actualidad y en el futuro lo serán aún más. También, la carrera tiene perfil profesionalizante lo que refuerza las habilidades docentes para diseñar, gestionar y materializar la aplicación de sus campos educativos a una diversidad de situaciones. A su vez, la modalidad también fue clave para su elección, la cursada virtual cuenta con cierta flexibilidad consciente que permite generar un escenario óptimo para desarrollar y madurar el aprendizaje autónomo, ubicuo y autoregulado.

¿Cómo fue el desarrollo de su tesis con su directora?

Comenzamos 10 días antes de lo que luego conoceríamos como cuarentena, por lo que el desarrollo se dio en su totalidad en la virtualidad. La Mg. Paola Allendes no solo fue una excelente directora, también fue una gran tutora que brindó contención, aliento y motivación en los momentos más difíciles. También agradezco la oportunidad de la Mg. Marcela Chiarani, por haberme permitido sumar a la maestría ya comenzada la primera cohorte.

¿Por qué eligió trabajar sobre el ingreso virtual de Matemática?

En 2019 luego de finalizado el curso de ingreso de matemática, se realizó un diagnóstico en la asignatura de Análisis Matemático I. En el mismo se concluyó que estaban dadas las condiciones para realizar una primera integración de TIC que enriquezcan los procesos de enseñanza-aprendizaje.

En un principio esta primera integración TIC refería realizar un aula virtual multiplataforma que alojara los apuntes, tuviera espacios de comunicación, que recomendara recursos educativos e integre actividades a desarrollar teniendo en cuenta los días que no se dispondrían de clases por causa de fuerza mayor (paro de transporte, paro docente, feriados, etc.), con el objetivo de complementar la cursada presencial.

Luego del cursado de Análisis Matemático I, se identificó que las mayores dificultades en ella referían a contenidos relacionados al curso de ingreso de matemática, más que a sus propios contenidos.

Después de analizar los distintos alcances con la Mg. Allendes, propuse convertir la primera integración TIC que complementara la cursada presencial en una primera propuesta 100% virtual, reconociendo que debía ser desarrollada prácticamente desde cero utilizando una metodología innovadora.

Ya en perspectiva, si bien el desafío fue gigantesco, considero que el camino que tomamos fue muy acertado.

¿Qué significa haber finalizado esta carrera?

Significó concretar un sueño de años. Es la materialización de mucho esfuerzo y sacrificio. Estoy muy feliz de haber finalizado esta formación superior en enseñanza para compartirla con mi institución, colegas y estudiantes.

¿Por qué razones recomienda cursar la carrera?

Considero que la formación en estas temáticas es clave para el presente y futuro de la educación en todos sus niveles. Desde el contexto pandémico se están demandando modelos híbridos y flexibles, es una tendencia que creo se acentuará aún más, por lo que debemos prepararnos para ofrecerle a la sociedad la oferta con la mayor calidad posible.

Estudiantes de Minería realizaron sus Prácticas Profesionales en Jujuy

En el marco de un Acuerdo entre la Facultad de Ciencias Físico Matemáticas y Naturales (FCFMyN) de la Universidad Nacional de San Luis (UNSL), la Universidad Nacional de Jujuy (UNJU) y el Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), estudiantes del Departamento de Minería realizaron sus Prácticas Profesionales Supervisadas.

Se trata de los estudiantes de la Ingeniería en Minas Natalia Di Carlantonio y Franco Luna, quienes realizaron su Práctica bajo la supervisión de la Dra. María Laura Vera (UNJU) y el Mg. Vicente Fusco (UNSL).

La misma tuvo una duración de 200 horas, para lo cual se desarrollaron 35 horas semanales de trabajo. 

A continuación, los estudiantes comentaron su experiencia en la provincia de Jujuy: 

¿En qué consistieron las actividades realizadas?

Natalia: Estuvimos en un centro de investigación y mediante métodos electrolíticos buscamos separar los elementos que tiene la salmuera para obtener como producto final el litio. Esto traería muchos beneficios a lo que es el tratamiento de la salmuera actualmente porque los elementos que contiene se pierden, solo hacen la obtención del litio, y mediante este proceso obtendríamos agua desalinizada que sería muy útil para la Puna jujeña donde hay escasez de agua. Quizá no es útil para consumo humano, pero sí lo es para riego.

Franco: Estuvieron determinadas por cada director de práctica y aunque originalmente cada uno teníamos uno distinto a mí me interesaba mucho el otro proyecto. Una vez finalizadas las actividades que tenía designadas me introduje en el proyecto de mi compañera donde realicé algunas actividades durante los últimos días de nuestra estadía.

¿Cómo definen el fenómeno del litio?

Natalia: Es un tema interesante y del futuro, le llaman oro blanco porque es lo que se utiliza para hacer las baterías. Cuando se explote más la cuestión de los autos eléctricos en nuestro país se necesitará del litio para las baterías de esos autos, además de otros objetos electrónicos que cuentan con baterías de litio y que utilizamos cotidianamente. 

Franco: Como bien sabemos el litio se comercializa principalmente en forma de baterías en una infinita diversidad de equipos electrónicos que requieren de cierta autonomía y que no están conectados permanentemente a la red eléctrica. Y pese a la invención de tecnologías más recientes, como sustituto el litio, para el almacenamiento de energía eléctrica el litio sigue siendo a nivel industrial la tecnología más promisoria. 

¿Qué les pareció esta posibilidad de hacer las prácticas en una temática que era de su preferencia?

Natalia: Me pareció excelente porque me ayudó a ver otro campo de mi carrera que es la investigación y no solamente el trabajo de campo que hacemos en la Ingeniería en Minas. Me llevo una gran experiencia y conocimientos de este tiempo. Espero que otros compañeros y otras compañeras también puedan realizar algo parecido. 

Franco: Las prácticas resultaron muy interesantes, no sólo desde el punto de vista de la temática sino también desde una mirada general en referencia a la investigación, ya que normalmente el perfil del ingeniero en minas está apuntado a la industria y no se lo destina tanto al ámbito científico y de investigación. Fue una muy buena experiencia para rectificar y ratificar algunas nociones que podríamos haber tenido acerca de la academia. Lo cual fue muy fructífero porque me ayudó a darme cuenta si era lo que me gustaba para trabajar en el futuro. De no haber sido por esta oportunidad de práctica creo que no se hubiera dado en otro lugar.

Geología del lapso Precámbrico superior

En el marco del “Ciclo de entrevistas a Investigadores/as Directores/as de Proyectos/Laboratorios de la Facultad” hoy dialogamos con el Dr. Andrés Carugno Durán, co-director del Proyecto “GEOLOGÍA DEL LAPSO PRECÁMBRICO SUPERIOR. MIOCENO DE PROVINCIA DE SAN LUIS Y SU CORRELACIÓN CON REGIONES CIRCUNVECINAS” del Departamento de Geología.

El proyecto comenzó en 2003, pero tiene como antecedente un proyecto de 1998 cuyo objetivo era confeccionar el mapa geológico de San Luis y regiones circunvecinas. En esa oportunidad participaron investigadores de otras universidades, luego investigadores locales y durante décadas se fue gestando este modelo multidisciplinario de estudio de áreas de basamento y sedimentos más modernos. Actualmente, el proyecto cuenta con 20 integrantes aproximadamente.

¿Nos puede describir la temática del proyecto de investigación que Ud. dirige?, ¿Qué líneas de investigación las integra?

El objeto de este proyecto es analizar la evolución geológica de la región centro oeste de Argentina en el periodo comprendido entre el Precámbrico superior y el Mioceno. Este importante lapso de la historia geológica abarca más de 500 millones de años, y se reconoce en el área por rocas ígneas y metamórficas, las más antiguas que hay en la provincia, y que constituyen las exposiciones más australes de las Sierras Pampeanas. Asimismo, se encuentra en la región rocas sedimentarias del Paleozoico superior, Mesozoico y Cenozoico, que son también motivo de estudio por parte del proyecto.

Las líneas que integran el proyecto son tres: a) Metamorfismo y estructura del basamento. b) Petrología, geoquímica y mineralizaciones asociadas al magmatismo paleozoico. c) Sedimentología, estratigrafía y paleontología de las rocas pertenecientes al lapso Proterozoico superior – Mioceno.

En la escala de tiempos geológicos, ¿En qué era se ubica el lapso precámbrico superior?

En términos estrictos el Precámbrico es lo que se llama un Supereón, que comienza con el inicio del planeta Tierra, hace unos 4600 millones años y finaliza hace 540 millones de años. La última Era del Precámbrico es el Neoproterozoico, y dentro de este el periodo final es el Ediacariano, que va desde los 635 millones de años hasta los 540. Las rocas más antiguas que hay en San Luis, comienzan a formarse en ese periodo y son algunas de las que estudiamos, junto con las más jóvenes.

¿Cuáles son las metodologías e instrumental que hacen posible estudiar la geología de la tierra desde hace tantos años?

Para hacer posible el estudio de las rocas que integran este gran período de tiempo, es necesario el uso de equipamiento específico, tanto para las tareas de campo (vehículos, brújulas, GPS , martillos, lupas y otros elementos), como para las tareas de laboratorio, donde es fundamental contar equipos para el procesamiento de las muestras recolectadas en el campo, y con instrumental para su estudio como lupas, microscopios ópticos, microscopios electrónicos (análisis cualitativo o semicuantitativo de minerales), microsondas electrónicas (análisis cuantitativos de minerales) e iónicas (edades de las rocas). También se requiere de laboratorios de análisis químico de rocas.

La Universidad cuenta con los equipamientos básicos para realizar alguna de las tareas de investigación, ya que los costos de estos equipos son muy elevados. Los otros equipos se obtienen por cooperación con otras instituciones nacionales o extranjeras, o mediante servicios pagados a laboratorios privados

Gran parte de sus investigaciones se enfocan en nuestra provincia y regiones vecinas, ¿Estas cuestiones están presente en qué sectores de San Luis?, ¿Esto se extiende a nuestro país y América del sur? Al respecto, ¿Cómo es la vinculación con investigadores de otras universidades de Argentina y del mundo?, ¿Es una práctica habitual realizar trabajo colaborativo entre las distintas provincias y países?

Los resultados del presente proyecto permiten incrementar los conocimientos sobre la evolución geológica de la provincia de San Luis y áreas próximas, particularmente las correspondientes a la región central de Argentina. Sin embargo, las características de la investigación permite elaborar modelos evolutivos que pueden ser comparados con otras regiones de Sudamérica o del mundo.

En el trabajo abordado existe una importante vinculación con investigadores de otras universidades, integrando proyectos conjuntos, o diferentes acciones de colaboración.

Sin duda, las actividades conjuntas aportan una sinergia que permite un mejor aprovechamiento de los recursos tanto humanos como materiales.

¿En qué grado ha impactado (o impacta) en el desarrollo de sus investigaciones, el avance en la tecnología y precisión del equipamiento que hoy se encuentran disponibles?

El importante desarrollo tecnológico ha impacto de manera muy importante en los estudios que desarrollamos. De esta manera se pueden obtener datos que eran impensables hace tres décadas. Algunos equipos que se utilizan son: ICP masa, microanálisis electrónico microscopia SEM y otras técnicas hacen posible que podamos obtener la composición y la edad de una roca, lo cual es importante para poder realizar nuestra tarea. Hoy la tecnología ha avanzado en este campo, pero para nosotros es más difícil alanzar estos equipos por sus altísimos costos.

¿Quiénes fueron sus mentores/impulsores para el desarrollo del proyecto?, ¿Hubo impulso/apoyo de algún programa nacional, externo o internacional en la formación de recursos humanos de su grupo de investigación?

Uno de los investigadores locales es el Dr. Ariel Ortiz Suarez, quien aún dirige el proyecto actual y está por jubilarse. Muchos de los resultados obtenidos en los últimos años, por los integrantes del proyecto, han sido transferidos a diversas instituciones y organizaciones como el SEGEMAR, Museo de Cs. Naturales de la UNSL  y Parques Nacionales. La información obtenida puede ser útil, también, a toda institución o empresa que requiera datos geológicos de base para exploración minera o petrolera, o para planificación y ordenamiento territorial.

La mayoría de los doctorandos del proyecto han podido realizar sus posgrados con apoyo de becas del CONICET y de otros organismos que les han permitido realizar perfeccionamiento y estudios en el exterior. 

Además, organismos internacionales como el American Museum of Natural History. Nueva York, USA, la Fundación Carolina, la Agencia de Cooperación Española, el Banco Santander, Universidades como Módena (Italia), Complutense (España), Oviedo (España), Barcelona (España) y, por otra parte, proyectos de la Agencia Nacional de Promoción Científica y Tecnológica, del CONICET, de la UNSL y  la provincia de San Luis, han aportado fondos para los trabajos de investigación.

En investigación, es una práctica común realizar estadías de trabajo en otros Centro o Universidades, ¿Puede comentarnos qué experiencias han tenido y que posibilidades actuales de movilidad y/o estancias tienen sus investigadores?

Nuestros investigadores deben viajar y realizar estadías en diferentes lugares del mundo para poder llevar a cabo tareas para sus investigaciones ejemplos como Estados Unidos, España, Italia, Brasil y diferentes partes de Argentina. Si bien hoy por la situación económica que transitamos es más difícil realizar estos viajes, aún así se tienen que hacer con fondos de proyectos externos.

Estudiantes de Informática podrán continuar con pasantías en empresas de Software

La decana de la Facultad de Ciencias Físico Matemáticas y Naturales (FCFMyN), Dra. Marcela Printista se reunió con el presidente de la Cámara de la Industria del Software y Tecnologías de la Información y las Comunicaciones de San Luis (CISTIC), Sr. Rodrigo Ferrero.

En dicha reunión se realizó la firma para la renovación del Acta Complementaria en el marco del Convenio existente entre la Universidad Nacional de San Luis y la CISTIC.

También participaron el Secretario Innovación y Desarrollo, Mg. Vicente Fusco y el Mg. Alberto Sánchez, docente del Departamento de Informática y Secretario de la CISTIC.

El Acta tiene que ver con un acuerdo de Pasantías Educativas, las cuales ya se habían realizado en distintos años y, en esta oportunidad, se renovó para continuar con las actividades formativas que realicen los y las estudiantes sustantivamente relacionadas con la propuesta curricular de los estudios cursados en la Facultad.

Las pasantías se implementan año a año en dependencias de las empresas que conforman la Cámara y tienen como objetivo complementar la formación académica con la práctica para luego profundizar el desarrollo de capacidades, habilidades y el manejo de tecnologías actualizadas en el ejercicio de la profesión elegida.

Adicionalmente, se acordaron acciones que ya se venían trabajando con antelación. Las mismas tienen que ver con charlas por parte de pasantes que se encuentran trabajando en empresas para comentar a los ingresantes o estudiantes de los primeros años sobre su experiencia. Esto ayuda a motivarlos para continuar con sus estudios y que vean que tienen la posibilidad de formar parte de cualquier empresa.

Otra iniciativa ideada por el Departamento de Informática en conjunto con el Proyecto de Investigación “Ingeniería de Software: Estrategias de Desarrollo, Mantenimiento y Migración de Sistemas en la Nube” y el Laboratorio de Calidad en Ingeniería de Software es la investigación sobre la evaluación de estrategias para lograr que el conocimiento quede en las organizaciones a partir de las actividades que desarrollan sus empleados.

El Mg. Sánchez explicó que: “Esto surge porque en algunas ocasiones los empleados cambian de trabajo o de funciones, teniendo en cuenta que actualmente el sector del software y servicios informáticos está sufriendo un alto nivel de rotación de personas. Por lo tanto, esta necesidad es algo que el sector lo requiere y se realiza como parte de actividades de vinculación entre la Universidad con el medio. Cabe aclarar que ya se puso en marcha para que nuestros investigadores aporten soluciones a las empresas para sanear parte de la problemática”.

Entrevista al Mg. Alberto Sánchez

¿Por qué es importante la renovación del Acta Complementaria?

Resulta interesante mantenerla vigente porque es un canal que disponen los estudiantes avanzados para comenzar a realizar prácticas en el mercado donde se van a desempeñar luego de graduarse. Tanto el Acta Complementaria como la de Prácticas Profesionales Supervisadas son dos medios para que las tecnicaturas, ingenierías y licenciaturas puedan realizar actividades en campo de manera concreta y directa con empresas del medio. Además, después de adquirir esta experiencia pasan a ser candidatos/as para ocupar posiciones en las empresas.

¿En qué otros aspectos se ven beneficiados/as los/las estudiantes del Departamento de Informática?

Una de las razones es que comienzan a tener contacto con el ámbito que será su futuro espacio laboral y, además, los conocimientos de todos los aspectos formativos que brindamos en las carreras los llevan a la práctica. Esto les permite transicionar desde lo que tiene que ver con las prácticas académicas a las prácticas concretas que se realizan en las empresas donde se llevan a cabo las pasantías, en proyectos o actividades propios que la empresa desarrolla, como así también trabajando sobre herramientas y lenguajes de programación que utilizan las empresas.

¿Qué cuestiones aprenden los y las estudiantes con respecto al desarrollo de software?

Son aquellas que tienen que ver con la labor desde el punto de vista técnico, donde se familiarizan con herramientas y lenguajes de programación. Estos son utilizados por las empresas para llevar adelante sus proyectos, productos y servicios que desarrollan.

Desde el punto de vista de habilidades blandas, los y las estudiantes comienzan a tener relación con gente del ámbito y a desempeñarse en equipo, trabajan con clientes concretos y se requiere de habilidades interpersonales que les permiten entender lo que es desenvolverse en las empresas de la industria del software y servicios informáticos.

Entrevista al Sr. Rodrigo Ferrero

¿En el último tiempo se incorporaron nuevos empresarios a la Cámara?

Si, durante el 2020 y 2021 se sumaron empresarios para formar parte de la comisión directiva, lo cual demuestra la actualidad y necesidad de agruparse y organizar actividades para el sector.

En el caso de empresas interesadas a inscribirse, ¿Cuáles son los requisitos que deben reunir?

Su objetivo de negocio debe estar vinculado con el objetivo de la cámara. Tiene que ver con las empresas de software y las empresas que desarrollan tecnologías de la información en su más variado espectro y también con empresas que se dediquen a las comunicaciones.

Cabe destacar que la mayoría de las empresas radicadas en San Luis forman parte de la CISTIC y siempre se procura tratar de convocar a aquellas empresas que todavía no se unieron.

¿Por qué considera importante la actualización del Acta Complementaria con la FCFMyN?

La renovación permite estrechar los lazos que existen entre dos partes fundamentales que hacen que este ecosistema funcione: las empresas y la educación superior. Teniendo en cuenta el triángulo de Sábato, este es un claro ejemplo de la relación de dos de sus vértices. La industria del software requiere de personas formadas que brinden una diferenciación en cuanto a calidad.

¿Cómo ve el desarrollo de capacidades y habilidades de los/las estudiantes?

Tienen un buen nivel de desempeño y eso se ve reflejado en el desarrollo de pensamiento crítico y habilidades técnicas que llevan incorporado desde su formación en la Facultad. Desde las empresas se trabaja mucho en complementar a los/las estudiantes con el conocimiento del mercado y de los lenguajes que se utilizan de forma habitual en los productos y en los servicios que se desarrollan.

Estudio axiomático de la asignación de recursos

En el marco del “Ciclo de entrevistas a Investigadores/as Directores/as de Proyectos/Laboratorios de la Facultad” hoy dialogamos con el Dr. Agustín Bonifacio, director del Proyecto “Estudio axiomático de la asignación de recursos – juegos de formación de coaliciones y asignación de estudiantes a escuelas” del Departamento de Matemática.

Su investigación actual se concentra en dos grandes áreas: las funciones de elección social no manipulables y los juegos de formación de coaliciones y, en particular, los modelos de asignación bilateral. 

¿Qué le atrajo de San Luis para venir a cursar su Doctorado en Matemática en la FCFMyN?

Habiendo estudiado las Licenciaturas en Economía y Matemática en la Universidad Nacional de Río Cuarto, tenía claro que quería hacer investigación en teoría económica. En particular en modelos de interacción estratégica, lo que comúnmente se denomina “Teoría de juegos”. El  Instituto de Matemática Aplicada San Luis poseía, y considero que aún posee, al mejor grupo de investigación en el tema del país, por eso decidí venir a San Luis a hacer mi Doctorado.  

¿Qué temas abarca su proyecto de investigación? 

Las funciones de elección social son abstracciones que tratan de estudiar cómo asignar recursos dentro de una sociedad teniendo en cuenta las preferencias de los miembros de esa sociedad, por ejemplo, pensemos en los sistemas de votación que utilizamos para elegir a nuestros representantes o en los sistemas de precios que utilizamos para organizar nuestra economía. En general, las preferencias de los agentes son información privada y por esto los agentes pueden tener incentivo a mentir a la hora de declararlas. Por ejemplo, en una elección, ¿quién no ha mentido votando estratégicamente para que gane el “menos peor” de los favoritos?. Lo que tratamos en estos estudios es entender cómo son las funciones de elección social inmunes a este tipo de comportamiento. 

En tanto, en los juegos de formación de coaliciones cada agente tiene preferencias sobre los distintos subconjuntos que lo involucran y el problema consiste en predecir qué grupos de agentes, que en la jerga se denominan “coaliciones” terminarán formándose. Un caso particular de suma importancia en aplicaciones son los modelos de asignación bilateral en los que existen dos lados bien identificados del mercado (hospitales y doctores, colegios y estudiantes, o firmas y trabajadores) y debemos estudiar cómo realizar asignaciones “estables” entre estos grupos. 

¿Con cuáles profesionales se encuentra trabajando actualmente en su Proyecto de Investigación?

En el PROIPRO se encuentran involucrados el Dr. Pablo Neme (como co-director) y la Dra. Noelia Juarez, ambos docentes de nuestro Departamento de Matemática y miembros del Grupo de Teoría de Juegos del Instituto de Matemática Aplicada San Luis (GTJ-IMASL), del que también formo parte. Trabajamos en colaboración con otros integrantes del GTJ-IMASL. En particular, junto al Dr. Jorge Oviedo y la Dra. Nadia Guiñazú estamos estudiando la estructura de modelos de asignación bilateral muy generales.

Con el Dr. Pablo Neme también estoy trabajando en otras dos líneas de investigación. En la primera, junto con el Dr. Jordi Massó de la Universidad Autónoma de Barcelona, tratamos de entender cómo deben ser las preferencias de los agentes para que las funciones de elección social no se puedan manipular. En la segunda, junto con la Dra. Elena Iñarra de la Universidad del País Vasco, estamos estudiando una nueva noción de equilibrio para juegos de formación de coaliciones.

Otro trabajo que puedo nombrar es el que estoy realizando junto al Dr. Pablo Arribillaga (también del GTJ-IMASL) y  el Dr. Marcelo Fernández (de la Johns Hopkins University), referido a una noción débil de inmunidad a manipulación de funciones de elección social. En este contexto, estudiamos qué reglas de votación cumplen este requisito.

Bonifacio junto a Pablo Neme y Elena Iñarra de la Universidad del País Vasco en la UNSL, agosto 2019

En su área de investigación,  ¿Se promueve el trabajo interinstitucional y la vinculación con investigadores de otras universidades de Argentina y de otros países?, ¿En cuáles Universidades ha tenido la oportunidad de realizar estancias académicas?

 Mantener una nutrida red nacional e internacional de colaboración científica es fundamental. Tuve la suerte de realizar estudios bajo la supervisión de William Thomson en el Departamento de Economía de la Universidad de Rochester, Estados Unidos, mientras realizaba mi Doctorado en la UNSL, gracias a una beca Fulbright. Además,  realicé dos estancias de investigación en la Universidad Autónoma de Barcelona, invitado por Jordi Massó, y una estancia de investigación en la Universidad del País Vasco en Bilbao, invitado por Elena Iñarra. 

Agustín a integrantes del GTJ-IMASL y Alvin Roth (premio Nobel en Economía 2012) en San Pablo, Brasil, 2014.

¿Quiénes son los referentes que impulsaron esta línea de investigación en la Facultad?

El estudio de la Teoría de Juegos en San Luis comenzó en la década de 1960, con el trabajo pionero del Prof. Ezio Marchi, quien se doctoró bajo la supervisión de Ewald Burger , autor de uno de los primeros libros de texto de la disciplina en lo que todavía era la Universidad Nacional de Cuyo. Desde entonces muchos de sus discípulos continuaron su legado, formando el GTJ-IMASL. Dos de ellos, el Dr. Alejandro Neme (director del GTJ-IMASL) y el Dr. Jorge Oviedo fueron mis supervisores en el Doctorado.

¿Pertenece a alguna organización de la rama de la matemática o de la economía?

Soy socio de la Unión Matemática Argentina (UMA), que actualmente preside el Dr. Alejandro Neme, y de la Econometric Society,  que es una sociedad internacional para el avance de la teoría económica en su relación con las matemáticas y la estadística. También, formo parte de la Red Nacional de Investigadores en Economía (RedNIE), que publica una serie de documentos de trabajo y realiza seminarios virtuales. Además, desde noviembre de 2021 tengo el honor de ser Vocal Titular en el Consejo Directivo de la Asociación Argentina de Economía Política (AAEP). Esta asociación nuclea a un gran número de  economistas académicos del país y su principal actividad consiste en realizar una reunión anual para la discusión de trabajos.

Discutiendo su investigación con John Nash (premio Nobel en Economía 1994) en San Pablo, Brasil, 2014

¿Qué reconocimientos tiene el Grupo de Teoría de Juegos del IMASL?, ¿Usted ha recibido alguno?

El grupo tiene una larga trayectoria y mucho reconocimiento tanto nacional como internacional. Según Research Papers in Economics (RePEc), una base de datos que analiza la investigación en economía a nivel global, nuestro grupo se encuentra muy bien posicionado en el país, ya que estamos dentro de las primeras 10 instituciones en producción científica, y somos la primera fuera de la provincia de Buenos Aires. El director de nuestro grupo, Alejandro Neme, además de ser Profesor Emérito de la UNSL y presidente de la UMA, recibió el premio Konex en Teoría Económica en 2016 y fue nombrado Fellow de la Society for the Advancement of Economic Theory (SAET) en 2020. Por mi parte, recibí el premio de la  Academia Nacional de Ciencias Económicas para publicaciones en el año 2015, por un trabajo surgido de mi tesis doctoral. 

¿Qué impacto tiene en la sociedad lo que realiza desde su grupo de investigación?

Si bien las contribuciones de nuestro grupo son completamente teóricas, el desarrollo de los modelos que estudiamos ha permitido rediseñar mercados y crear de la nada nuevas formas de interacción social. Por dar un ejemplo, consideremos los modelos de asignación bilateral (two-sided matching, en la jerga académica). El principal referente en este tema es Alvin Roth, quien ganó el premio Nobel en Economía en 2012 junto a Lloyd Shapley, uno de los “padres fundadores” de la teoría de juegos.  Estos modelos han permitido rediseñar los complejos sistemas de  asignación de médicos residentes a hospitales en varios países del mundo como Estados Unidos e Inglaterra, y de estudiantes a escuelas en muchas ciudades como Nueva York y Boston. Además, Alvin Roth e investigadores del área, junto con médicos y políticos diseñaron el “Programa de intercambio de riñones de Nueva Inglaterra” que permite emparejar donantes renales con receptores compatibles.

Dr. Bonifacio presentando en la AAEP 2021 en Buenos Aires

¿Cómo vislumbra el futuro de la teoría de juegos y la teoría de la elección social?

La intersección de la teoría de juegos y la teoría de elección social dio por resultado lo que hoy se denomina la “teoría del diseño de mecanismos”.  El diseño de mecanismos cambia el objeto básico del análisis económico desde la asignación de recursos hacia el plan social o mecanismo de asignación que especifica cómo esa asignación de recursos debería depender de la información que poseen los individuos de la sociedad. Este cambio de punto de vista permite diseñar nuevas instituciones sociales con mejores propiedades en términos de eficiencia y  equidad. Las aplicaciones de la teoría son cada vez más relevantes e importantes. Además de las aplicaciones de los modelos de matching que nombramos anteriormente, podemos hablar del diseño de subastas, plataformas de comercio electrónico, entre otras cuestiones. Por todo lo anterior considero que ambas teorías tendrán un papel aún más preponderante en desarrollos futuros de la teoría económica.

Entrevista: Esp. Francisco Vidal Sierra

Fotos: Gentileza Dr. Bonifacio

Capacitación sobre sistemas electrónicos de alta performance

Se dictó un curso de perfeccionamiento en el Departamento de Electrónica de la Facultad de Ciencias Físico Matemáticas y Naturales. El mismo se tituló “Sistemas Embebidos basados en un sistema en un módulo para inteligencia artificial”  que versa sobre el diseño de sistemas electrónicos de alta performance para aplicaciones de visión artificial con inteligencia artificial.

El curso estuvo a cargo del Dr. Gustavo Sutter, profesor visitante de España.  Es Ingeniero en sistemas en la Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA) y Doctor en informática y telecomunicaciones por la Universidad Autónoma de Madrid. Cuenta con más de 15 años de experiencia en diseño de sistemas basados en FPGA. Se especializa en el área de arquitectura de ordenadores, diseños digitales con FPGA, aritmética de computadores y computación de altas prestaciones. Ha colaborado en múltiples proyectos de investigación y de transferencia con empresas. Ha escrito 3 libros y más de un centenar de comunicaciones técnicas. Ha dictado decenas de cursos en diferentes Universidades y participa activamente en la formación a empresas. Actualmente es docente e investigador en la Escuela Politécnica Superior de la Universidad Autónoma de Madrid y coordina las tareas de la iniciativa ElectraTraining.

¿Cómo es su vínculo con la UNSL?, ¿Desde cuándo presta colaboración?

Aproximadamente comencé a relacionarme con la institución en el año 2006 cuando organizamos un curso para docentes en Mar del Plata, donde participó un colega de aquí. Desde el 2007 vengo regularmente a San Luis y siempre dicto un curso o una charla. Además es una provincia a la que me gusta venir porque también tengo familiares.

En cuanto a la temática del curso, ¿En qué se basa la lógica reprogramable?

Trabajamos con una tecnología que se llama lógica reprogramable, que son circuitos que se pueden programar a muy bajo nivel, lo cual permite tener la performance de hacer un circuito a medida, pero con la posibilidad de ser reprogramado. En ese contexto, aparecen nuevas metodologías de programación y nuevos productos y esto va encaminado a la última tendencia que es aplicar algoritmos de inteligencia artificial sobre este tipo de tecnologías.

¿Qué aplicaciones tiene?

Tiene que ver con que las aplicaciones son innumerables, desde conducción autónoma, ciudades inteligentes, videovigilancia, detección de incidencias y control predictivo en industrias y el sector agropecuario hasta el análisis de imágenes médicas, detección de enfermedades y ayuda a la dependencia.

¿Para qué sirve el uso de sistemas en un módulo (SOM)?

Permite desarrollar complejas aplicaciones en pocas semanas con costos de desarrollo muy acotados al alcance de pequeñas y medianas empresas, con un rápido impacto en la sociedad.

¿Qué puede mencionar sobre los algoritmos de inteligencia artificial?

En el curso expliqué cómo utilizan las tarjetas para implementar algoritmos de inteligencia artificial. Sobre todo en el campo de la visión artificial para reconocer objetos y cosas por el estilo, algo que está en auge como la conducción autónoma, conteo de personas, administración de tráfico de forma autónoma y todo este tipo de problemáticas.

¿Cómo fue la participación de los/las docentes de Electrónica?

Fue muy satisfactoria. Para mí resultó muy positivo estar al frente de este curso con gente que está motivada en el tema. Hay buen nivel de conocimiento y se pudieron contar cosas de último estado del arte,  porque los asistentes lo aprecian y lo quieren aprovechar.

Durante una reunión con la decana de la FCFMyN se habló de hacer una actividad conjunta, ¿Qué dato puede adelantar?

Efectivamente, desde el 2004 organizamos el Congreso Internacional de Lógica Programable en Latinoamérica y fue cambiando de sedes, entre Brasil y Argentina. Estaba programado  hacerlo en la UNSL en el 2020, pero por la pandemia no se pudo. Nuestro propósito es volver a realizar esta actividad presencial en San Luis, ya que convoca a gente de Latinoamérica, Europa y Estados Unidos.

Caracterización de materiales mediante sonda de electrones

En el marco del “Ciclo de entrevistas a Investigadores/as Directores/as de Proyectos/Laboratorios de la Facultad” hoy dialogamos con la Dra. María del Rosario Torres Deluigi, directora del Proyecto “Caracterización de materiales mediante sonda de electrones” del Departamento de Física.

La formación académica de grado de la profesional se basa en dos carreras de la Facultad de Ciencias Físico Matemáticas y Naturales: el Profesorado de Enseñanza Media y Superior en Matemática, Física y Cosmografía y la Licenciatura en Física. En cuanto a posgrado se recibió de Magíster en Energías Renovables, título obtenido en la Universidad Nacional de Salta en 2001, y se graduó como Doctora en Física por la FCFMyN- UNSL, carrera finalizada en 2005.

¿De qué se trata su proyecto de investigación?

En este proyecto estudiamos procesos físicos fundamentales de la Microscopía Electrónica de Barrido (Scanning Electron Microscopy: SEM) y el Microanálisis con Sonda de Electrones (Electron Probe Micro Analysis: EPMA), con el propósito de desarrollar metodologías que permitan optimizarla caracterización de materiales. Estas técnicas se basan en los procesos de interacción entre los electrones que pertenecen a un haz incidente y los átomos de la muestra analizada. Como consecuencia de esas interacciones la muestra emite diversas señales que permiten conocer la morfología, topografía y composición química de pequeñas cantidades de material.

Dentina de pieza dental humana.

¿Qué características tiene el Laboratorio donde realiza sus investigaciones?

El desarrollo de este proyecto se lleva a cabo en el Laboratorio de Microscopía Electrónica y Microanálisis (LABMEM) que tiene doble dependencia (UNSL y CCT-SL) y cuya página web es http://labmem.unsl.edu.ar. De modo que en el LABMEM se realizan tareas de investigación y de docencia. Además, el laboratorio brinda servicios técnicos de primer nivel a empresas e investigadores de instituciones estatales y privadas, tanto locales como de provincias vecinas.

¿Cómo está organizado el Laboratorio?

Está dirigido por un Consejo de Administración integrado por cuatro docentes  investigadores designados por el Consejo Superior de la UNSL, y de manera rotativa se designa entre ellos a un Responsable del laboratorio, actualmente me encuentro ejerciendo esa designación.

Cristales de óxido cúprico (CuO) cuya longitud está comprendida entre 100 y 300 nanómetros.

¿Tiene vínculo con el Ministerio de Ciencia, Tecnología e Innovación de la Nación?El  LABMEM está adherido al Sistema Nacional de Microscopía (SNM), dependiente del Ministerio de Ciencia, Tecnología e Innovación de la Nación. El SNM realiza un seguimiento en tiempo real del uso de todos los equipos adheridos, de modo que al ingresar a su página web se puede conocer qué tipo de muestra se está analizando y quién es el operador que está efectuando ese análisis en cada laboratorio. Lo cual asegura transparencia del uso del equipamiento, y también el acceso al mismo de todos usuarios que lo demanden. También, la adhesión a este sistema permite el acceso a subsidios para reparar, actualizar y adquirir equipamiento. En definitiva, se busca garantizar la amortización de las inversiones realizadas en todo el país para adquirir estos equipos de envergadura.

Grano de polen de Passiflora cuyo, diámetro es de aproximadamente 60 micrones (la flor de esta especie es comúnmente llamada “Pasión de Cristo”).

¿Cuál es el equipamiento más importante del espacio?        

El principal equipo del LABMEM es el SEM, el cual posee amplia capacidad analítica, entre Z=4 (Be) y Z=92 (U). Este microscopio tiene acoplados dos espectrómetros de rayos X, uno dispersivo en energías y otro dispersivo en longitudes de onda (por sus siglas en inglés: EDS y WDS, respectivamente),que permiten registrar los espectros de rayos X emitidos por la muestra, y a partir de ellos realizar los análisis químicos cualitativos y cuantitativos. Las señales que se analizan provienen de una pequeña región, llamada volumen de interacción, que mide alrededor de un micrón cúbico, por eso hablamos de microanálisis de rayos x producidos mediante el impacto de electrones.

¿De qué manera el equipamiento del LABMEM permite el desarrollo de su investigación?

Actualmente, uno de los objetivos del proyecto es estudiar la estructura electrónica de algunos metales de transición cuando se encuentran integrando diferentes materiales. En particular, nos interesa comprender los cambios que provocan los estados de oxidación y el entorno químico local alrededor de los centros metálicos. Esta temática está comprendida dentro del campo de la Física Atómica y Molecular.

Para ello medimos y analizamos las líneas de emisión de rayos-x de los elementos de interés en distintos compuestos, y particularmente centramos nuestro interés en las líneas no diagramadas para investigar los fenómenos que las originan. Para ello, los compuestos son excitados mediante el bombardeo de electrones en el SEM que tiene acoplado un WDS (Wavelength Dispersive Spectrometer).  Este espectrómetro tiene gran resolución espectral y permite observar líneas satélites, provocadas por ejemplo por los átomos ligados al principal, y también líneas producidas por las vacancias simultáneas que provocan los electrones incidentes.

Además, estas mediciones pueden ser complementadas con otras efectuadas con equipamiento de mayor envergadura y de última generación, como lo es el Sincrotrón SIRIUS de Campinas (San Pablo, Brasil). De manera que, se pueden llegar a determinar parámetros cuánticos específicos, como el estado de espín de los orbitales moleculares involucrados en las transiciones electrónicas en los cuales se originan esas líneas no diagramadas.

¿Quiénes son los referentes que impulsaron esta línea de investigación en la Facultad?, ¿En qué año se inició y por qué?

La temática específica de este Proyecto de Investigación no tenía referentes en la Facultad ni en nuestra Universidad. Pero, fue precisamente en esta temática en la cual encontré los principales resultados de mi Tesis Doctoral, los cuales fueron publicados en importantes revistas internacionales. El Director de la misma fue el Dr. José Alberto Riveros de la Vega de la Facultad de Matemática, Astronomía  y Física (FAMAF) de la Universidad Nacional de Córdoba, y Co-Director fue el Dr. Roberto Olsina (Facultad de Química, Bioquímica y Farmacia, UNSL). De modo tal que, decidí continuar investigando en esta línea y conformar un nuevo grupo de investigación, en particular en 2006 realicé la presentación de mi primer Proyecto de Investigación (el PROIPRO 3-0307).

Con respecto al rango de aplicación de su investigación para la resolución de problemas, ¿Qué disciplinas abarca?

Las técnicas en las cuales se basa mi investigación se pueden aplicar para analizar muestras orgánicas e inorgánicas, por ejemplo muestras: biológicas, minerales, metálicas, cerámicas, microelectrónicas, aleaciones, arqueológicas, forenses, odontológicas, entre otras. Por lo tanto, la aplicación en investigaciones científicas y en la resolución de problemas industriales, es directa y de carácter muy amplio. Además, comprende varias áreas del conocimiento tales como Geología, Biología, Arqueología, Química y Física.

En cuanto a los recursos humanos integrantes del proyecto, ¿Provienen específicamente de la disciplina de física tienen una apertura y participación inter y multidisciplinaria?

En particular, actualmente el proyecto está integrado por físicos y biólogos. En otras oportunidades, también hemos sumado integrantes de otras disciplinas, como Geología y Química, quienes realizaron Pasantías, Tesinas y Tesis en la temática de este Proyecto.

Uno de los intereses de estas entrevistas con Directores/as de Proyectos de Investigación es analizar el grado de cooperación interinstitucional que se tiene desde la UNSL, ¿Cuál es su vinculación con investigadores de otras instituciones de investigación de la Argentina?

Mantenemos una fluida vinculación con investigadores del “Laboratorio de Microscopía Electrónica y Análisis por Rayos X” (LAMARX),y también del grupo de investigación “Espectroscopía Atómica y Nuclear” (GEAN), ambos de la Facultad de Matemática, Astronomía y Física (FaMAF) de la Universidad Nacional de Córdoba, con quienes existe una sólida relación de cooperación e intercambio que se ha concretado en la coautoría de artículos científicos y codirección de tesis.

¿Cuáles fueron los  principales resultados que se desprenden del trabajo de su grupo de investigación?

Al centro de la figura y en tonos de grises se muestra una imagen de electrones retrodispersados, de un corte delgado y pulido, del mineral llamado Monacita. A su alrededor se observan los mapeos de rayos X, que indican la zonación de los elementos presentes en la muestra. En la parte inferior se presentan los espectros obtenidos con EDS y WDS. 

 El hecho de poder estimar parámetros atómicos mediante los resultados experimentales obtenidos, me permitió hacer más concretos, y cercanos a mi realidad como docente investigadora, conocimientos teóricos estudiados en Física Cuántica. En particular, las mediciones de espectros de alta resolución obtenidos en el Sincrotrón de Campinas, me permitieron aplicar el principio incertidumbre de Heisenberg para estimar los tiempos de vida promedios de las vacancias que originan ciertas líneas de emisión.

Además, buscando interpretar resultados experimentales pude vincularme con prestigiosos científicos de Japón y de Holanda, quienes habían desarrollado diferentes métodos teóricos que permiten calcular espectros. De estas colaboraciones surgieron relevantes publicaciones en coautoría. 

Otro resultado muy valioso se obtuvo analizando mediciones que se efectuaron empleando únicamente equipamiento del LABMEM. El mismo forma parte de una Tesis Doctoral realizada en este proyecto, y fue publicado en la revista de alto índice de impacto “Microscopy and Microanalyisis”. En este trabajo se obtuvo un método que permite convertir las imágenes que forman los electrones retrodispersados en un SEM, en imágenes que brindan directamente el número atómico medio de las diferentes fases de la muestra.

Entrevista al Dr. Alberto Chevalier: “El emprendedorismo es una filosofía y una forma de ver el mundo”

El próximo martes 24 de noviembre, el Dr. Alberto Chevalier disertará sobre “Vacunas en tiempos de posverdad”, una actividad virtual del Ciclo de Capacitaciones en Innovación Abierta, organizado por la Secretaría de Innovación y Desarrollo (SEINDE) de la Facultad de Ciencias Físico Matemáticas y Naturales (FCFMyN), Universidad Nacional de San Luis (UNSL).

La charla se desarrollará por la plataforma Zoom de 19:00 a 20:30 horas. La inscripción se realiza en este enlace: formulario

El Dr. Chevalier es uno de los fundadores y dueños de GIHON LABORATORIOS QUÍMICOS SRL. Por lo que tiene funciones en el directorio donde se toman decisiones financieras, comerciales, inversiones, entre otras cuestiones. Asimismo, es el Director de I+D+i de la empresa y también está a cargo la gerencia de producción de todas las plantas de GIHON.

El profesional brindó una entrevista a prensa de la FCFMyN y nos comentó lo siguiente: “En I+D+i trabajo mucho en desarrollo de nuevos productos, nuevas tecnologías y nuevos sistemas de producción de productos innovadores. También dirijo el área de Aseguramiento de Calidad y formación de recursos humanos que vienen del ámbito científico y/o universitario. A mi pesar, paso más tiempo del que me gustaría frente a la computadora escribiendo y respondiendo correos electrónicos, sin embargo, frecuentemente me levanto y trabajo un rato en el laboratorio o recorro las plantas de producción”.

– ¿Cómo describe la evolución del Laboratorio Gihón en estos más de 20 años?

-Es una empresa de origen familiar, establecida en el Parque Industrial General Savio, de la ciudad de Mar del Plata, desde el año 1991. La empresa comenzó como un microemprendimiento familiar, dedicado a la elaboración de productos químicos especializados de química fina y de alto valor agregado y basados en el conocimiento, destinados a la industria farmacéutica. Con el transcurso del tiempo ha ido especializándose en la producción de agentes bacteriostáticos empleados en la elaboración de vacunas, una de las áreas más fuertemente controladas y reguladas dentro de dicha industria.

– ¿Qué nos puede contar acerca del producto principal de manufactura directa de sus laboratorios?

-Es el THIMEROSAL y cumple con todas las Farmacopeas internacionales y especificaciones exigidas para este compuesto. El Thimerosal (Thiomersal) es un antiséptico, bactericida y fungicida de amplio espectro, usado en gran variedad de productos medicinales-farmacéuticos de uso humano y veterinario debido a su alta eficacia a muy bajas concentraciones. Principalmente es utilizado como conservante / preservador en vacunas, como así también en diversas soluciones oftálmicas, antisépticas, etcétera.

Cabe destacar que GIHON LABORATORIOS QUÍMICOS SRL es el único productor a nivel mundial del THIMEROSAL USP/BP/EP, contando, además, con la aprobación de la FDA (Food and Drug Administration) para la Planta de Producción de dicha droga. Desde su creación, la empresa ha experimentado un crecimiento continuo, manifestado por la actualización constante de su línea de producción, la progresiva implementación de normas de calidad GMP/GLP, la instalación y equipamiento de un moderno Laboratorio de Investigación y Desarrollo y de Control de Calidad e Innovación, y más recientemente, de un laboratorio de síntesis a pedido para la producción de compuestos raros, de alto valor agregado y varias plantas piloto para desarrollo de nuevos emprendimientos.

– ¿Fue difícil lograr este prestigio y posición? ¿Pensaron que iba a llegar a tal punto de abastecer 160 laboratorios internacionales?

-Llegar a esta posición fue muy difícil y se logró con mucho esfuerzo, ya que el mercado internacional es muy exigente y el área farmacéutica se encuentra fuertemente regulada por lo que haber quedado como único proveedor en el mundo en el año 1995 hizo que repensáramos nuestra estrategia en el mundo. Para tal fin, generamos acuerdos con una empresa alemana para que distribuya nuestros productos en todo el mundo (a excepción de Sudamérica), mantuvimos la calidad de nuestro producto, reforzamos el cumplimiento de entregas, mantuvimos los precios estables e invertimos en ampliación de planta y en nuestro laboratorio de I+D+i. Nunca pensamos que nuestro producto estaría presente en más de 120 países alrededor del mundo y que estaríamos involucrados en diferentes campañas de inmunización por vacunación en los países más pobres del planeta.

-Sabiendo que GIHÓN es la principal productora mundial de conservante de vacunas, ¿qué puede contar del desarrollo del Thimerosal? ¿Para qué sirve ese conservante y por qué es tan importante?

-Es un compuesto que se utiliza para evitar el crecimiento de bacterias y hongos en vacunas que se suministran en viales multidosis. Asimismo, se utiliza en la producción de algunas vacunas, tanto para inactivar determinados microorganismos y toxinas como para contribuir a mantener la esterilidad de la cadena de producción. El thimerosal se viene utilizando desde los años treinta en la fabricación de vacunas y medicamentos. Los conservantes evitan el crecimiento de bacterias y hongos contaminantes que se pueden introducir durante el uso repetido de los viales multidosis. Estos viales se utilizan en muchos países porque necesitan menos espacio de almacenamiento en la cadena de frío y porque generan menos desechos, dos factores que tienen importantes repercusiones en los costos de los programas. Aunque los conservantes solo son necesarios en las presentaciones multidosis, los fabricantes suelen producir una sola formulación a granel, de modo que, si el producto tiene presentaciones multidosis y monodosis, estas últimas también contienen el mismo conservante. En muchos países es obligatoria la presencia de un conservante en las vacunas inactivadas envasadas en viales multidosis. Sin un conservante las vacunas en presentaciones multidosis podrían causar graves enfermedades y hasta la muerte de las personas.

– ¿Por qué ha sido fundamental el Laboratorio de I+D y el personal para que GIHÓN sea sinónimo de calidad e innovación en la industria química?

-La I+D es el trabajo creativo realizado con el objetivo de generar un nuevo conocimiento (científico o técnico) y su uso para crear nuevas aplicaciones, buscan la resolución de una incertidumbre científica y/o tecnológica; es decir, una solución creativa de un problema que no resulta evidente para alguien que está perfectamente al tanto del conjunto de conocimientos y técnicas habitualmente utilizadas en el sector. La I+D engloba a la investigación básica (generar un nuevo conocimiento principalmente abstracto o teórico dentro de un área científica o técnica, en sentido amplio, sin un objetivo o finalidad fijada de forma previa), la investigación aplicada (generar un nuevo conocimiento teniendo desde un principio la finalidad o destino al que se desea arribar) o el desarrollo experimental (trabajos sistemáticos que aprovechan los conocimientos existentes obtenidos de la investigación y/o la experiencia práctica, y están dirigidos a la producción de nuevos materiales, productos o dispositivos; a la puesta en marcha de nuevos procesos, sistemas y servicios, o a la mejora sustancial de los ya existentes). Las actividades de I+D puede distinguirse por resolver una incertidumbre científica y/o tecnológica, ser novedosa en comparación con el stock existente de conocimiento en la industria y/o actividad. Las actividades de I+D se realizan de forma sistemática; es decir con una cierta rutina o metodología mediante la que se planifica y se registran los procesos y los resultados. En general, en las actividades de I+D existe incertidumbre sobre los costos o el tiempo necesarios para alcanzar los resultados esperados. Se puede realizar en distintas unidades formales (departamentos, laboratorios, etc.) o bien puede ser llevada a cabo por parte de personal de otras áreas sin necesariamente conformar una unidad dedicada. También la I+D puede contratarse de forma externa. En muchos casos, las actividades de I + D se pueden agrupar para formar “proyectos de I + D”, los que se organizan y gestionan en relación a objetivos y los resultados esperados. No deben considerarse aquellas actividades que no sean novedosas, ni tampoco las actividades rutinarias, que no signifiquen la resolución de una incertidumbre científica o tecnológica.  GIHON es una EBT (Empresa de Base Tecnológica) y una de las pocas en el país que pueden justificar más del 80% de su inversión en I+D con fondos propios. Nuestro laboratorio de I+D comenzó a gestarse incipientemente en el año 1995 y hoy es el corazón de la empresa ya que todos los productos que vende nuestra empresa han surgido del laboratorio de I+D. Además, más de un tercio de la gente que trabaja en GIHON tiene algún título de grado o posgrado o es docente universitario por lo que invertimos en conocimiento a partir de nuestros recursos humanos y la inversión continua en equipamiento e instrumental de última generación a nivel científico. Trabajar en I+D conduce inexorablemente a innovar y eso nos ha permitido ser cada vez más competitivos a nivel mundial y estar en el tope de calidad internacional. Somos auditados por todos nuestros clientes y recibimos entre 6 y 8 auditorías internacionales de las empresas que producen vacunas en todo el mundo. También hemos recibido tres auditorías de la FDA (Food and Drugs Administration – USA) y siempre hemos sido aprobados. Nuestro Sistema de Gestión de la Calidad es muy robusto y reconocido por nuestros clientes.

– ¿Cómo ve la innovación tecnológica a nivel país, a pesar de la crisis por la pandemia?

-Para responder esta pregunta hay que mirar hacia atrás. La evolución de la inversión en I+D en la Argentina en los últimos 25 años osciló entre 0.45% y 0.57% del PBI de los cuales y en promedio 0.15% corresponden a la inversión privada y 0.35% a la inversión pública, por lo que podemos ver que no es un problema relacionado a un gobierno en particular ya que la inversión total es muy pobre en los últimos 25 años. Si comparamos con otros países como Irlanda (4.20%), Israel (4.25%), Suecia (3.50%), USA (2.75%), Japón (3.20%), Brasil (1.31%), Venezuela (0.12%), etc., vemos que estamos bastante mal. Una sólida inversión en I+D en un país es la base fundamental para luego tener innovación con impacto, por lo tanto, no es de sorprender que cuando miramos cuáles son las economías más innovadoras del planeta coinciden con las que más han invertido en I+D y la mayoría se encuentran en el hemisferio norte, sin embargo, Argentina se posiciona en los últimos lugares entre los 50 países más innovadores (podríamos estar peor según la inversión en I+D). Es de esperar que si Argentina no aumenta sus inversiones en I+D y CyT tanto desde el sector público como del privado seguiremos con bajos niveles de innovación tecnológica de alto impacto. Lo que hemos visto en esta pandemia con varios desarrollos innovadores como kits de detección, plasma de convalecientes, suero hiperinmune de equinos, etc., no es otra cosa que el conocimiento científico acumulado de décadas y el alto nivel de nuestros científicos reconocidos en todo el mundo.

-Además de su formación y vasta experiencia, ¿qué cuestiones lo han convertido en un científico emprendedor?

-El emprendedorismo es una filosofía y una forma de ver el mundo. La filosofía emprendedora es una doctrina que propone un cambio en la forma de ser, de hacer, de pensar de las personas. Propone el uso de la razón, el desarrollo de la autoestima del individuo y el trabajo arduo para lograr los objetivos y metas personales. Para desarrollar esta filosofía hay que ‘romper paradigmas’, ser felices, hacer por pasión lo que más nos guste. Un emprendedor es una persona que asume con alegría los retos y los riesgos que le plantea la vida, logra sus objetivos y genera cambios positivos en su entorno. No obstante, ser emprendedor es una decisión propia. No se enseña, se adquiere de los ejemplos, modelos, actitudes, experiencia o está dentro de nosotros. Para algunos es un atributo innato que algunas personas tienen. Para otros, el espíritu emprendedor puede ser enseñado, aunque no puede ser enseñado como un método. Generalmente, el emprendedor está en un estado de algún tipo de necesidad, emocional, económica, que despierta la necesidad de emprender “a cualquier costo”. Simplemente un emprendedor se hace preguntas, genera ideas, plantea problemas, intenta materializarlos y concluye en un emprendimiento. ¿Y qué nos planteamos?, por ejemplo, ¿qué me gustaría hacer?, ¿cuál es mi meta?, ¿siento pasión por lo que hago?, ¿estoy dispuesto a fracasar y seguir intentándolo?, ¿qué es el éxito?, ¿estoy dispuesto a tomar riesgos? Todo esto moldea un “perfil emprendedor” que podría ser como un rompecabezas, algo así: soñadores, tecnológicos, visionarios, valientes, sociales, innovadores, ambiciosos, pensadores, líderes, independientes, creativos, pioneros. Tal vez no todos, pero muchos de estos atributos deberían estar presentes si tenemos un espíritu emprendedor. Las escuelas y la educación formal han buscado el método y por eso el espíritu ha sido siempre dejado de lado. Se habla de espíritu emprendedor porque en primer lugar no tiene reglas escritas, sino más bien sensibilidades, estados de ánimo, una cierta apropiación de la historia, un cierto estilo. Pero entonces, ¿cómo y dónde se forman los espíritus cuando las universidades lo que saben es enseñar reglas, métodos y paradigmas? En realidad, definir el espíritu emprendedor no es cuestión sencilla, ya que las personas tienen diversas características que de cualquier manera los hace exitosos; en la actualidad el espíritu emprendedor es sinónimo de innovación, cambio, fundación de una nueva empresa o la toma de riesgos. Para desarrollar el espíritu emprendedor hay que sensibilizarse y atacar prejuicios. Éstos últimos arraigados en nuestra concepción de lo educativo. Por ejemplo, el prejuicio ideal de la educación es aquél que consiste en producir conocimientos que se adquieren y después se aplican. Otro prejuicio es el hecho que creemos que el éxito es cuestión de suerte. Pero la suerte no es más que una oportunidad bien aprovechada que requiere que se presente la oportunidad, pero el individuo debe estar preparado para explotarla.

-Teniendo esta relevancia nacional e internacional con el laboratorio ¿Por qué nunca dejó de hacer docencia universitaria?

-Hace 38 años que soy docente universitario, desde ayudante alumno o ayudante de segunda hasta profesor de tres asignaturas. Los motivos son varios, el primero es que amo la docencia y enseñar química a quien se me cruce por el camino y que muchas generaciones de químicos me recuerden con cariño me hace muy bien. El segundo motivo es que la docencia me permite transmitir conocimientos de la vida real en donde la lucha es feroz y muy distinta a la del ámbito académico y el tercero, es que la docencia me obliga a seguir estudiando, actualizándome y activo. Además, todos los años doy muchas charlas y disertaciones porque tengo el privilegio de que muchas universidades, institutos, congresos, dependencias públicas, entre otros, me inviten para contar cómo se puede emprender, investigar, desarrollar, publicar trabajos en revistas científicas internacionales, vincularme con el sector científico y exportar productos a decenas de países alrededor del mundo desde una empresa de base tecnológica.

– ¿Cuáles son sus proyectos futuros en función de las necesidades de la sociedad?

-Puedo mencionar el Plan de Inmunización Global, “Thimerosal Supply Security”. GIHON participa junto con la BMGF (Bill&Melisa Gates Fundations), la OMS (Organización Mundial de la Salud), la FDA (Food & Drug Administration), UNICEF, UN (Naciones Unidas), ONG´s  como PATH (Program from Appropriate Technology in Health), GAVI (The Global Alliance for Vaccines & Immunization), DCVMN (Developing Countries Vaccine Manufacturers Network), en un plan de inmunización global por los próximos 20 años para el control de vacunación de poblaciones en riesgo de África, Asia y América Central. Esto implica que nuestra empresa asegura el establecimiento de un stock de seguridad de Thimerosal que estará distribuido en lugares estratégicamente seleccionados alrededor del mundo con el objeto de asegurar la producción de vacunas ante el más mínimo problema como epidemias o pandemias. Es por esto que en el marco de la pandemia producida por el COVID-19 algunas de las vacunas que se produzcan para evitar esta enfermedad serán elaboradas con el Thimerosal que nuestra empresa produce ya que somos los únicos productores a nivel mundial calificados y aprobados por todos los laboratorios fabricantes de vacunas en todo el mundo. Los lugares para el stock han sido ya seleccionados, uno es en Alemania que cubre Europa y Asia, otra parte está aquí en Argentina, en Mar del Plata más precisamente y posiblemente otro stock de seguridad se consolide en la India. Nuestro rol en este proyecto es el de aportar el suministro estable de Thimerosal para cualquier fabricante de vacunas en los países cubiertos por la Global Alliance for Vaccines and Immunisation (GAVI). GAVI fue creada en el 2000 gracias a la iniciativa de la BMGF, Bill & Melinda Gates Foundation. Es un acuerdo único público-privado internacional que tiene como objetivo mejorar la cobertura en inmunización infantil en los países pobres brindándoles el acceso a vacunas. Desarrollo de una plataforma nanotecnológica para la vehiculización de variados principios activos para liberación controlada. Nanotecnología aplicada a sanidad humana y animal. Microencapsulación de distintos principios activos para la industria alimenticia y el agro. Síntesis de biopolímeros. Producción a escala industrial de Quitosano a partir del descarte pesquero de langostinos. Puesta en marcha de la primera planta en Argentina de concentrados moleculares de ácidos grasos poliinsaturados ricos en omega 3 (DHA+EPA). Otros. Todos son desarrollos de GIHON.

Entrevista: Lic. Francisco Vidal Sierra

Fotos: Gentileza Dr. Alberto Chevalier

Investigadores del IMASL recuerdan a Harold Abraham Scheraga

En los últimos días, la noticia del fallecimiento de Harold Abraham Scheraga, entristeció a la comunidad del Instituto de Matemática Aplicada San Luis (IMASL), ya que fue una persona más que importante para el crecimiento del mismo.

Scheraga falleció el 1 de agosto, a los 98 años, en Ithaca, Nueva York.

Para la Universidad Nacional de San Luis (UNSL) en general y para el (IMASL) -dependiente de CONICET y la UNSL- en particular, fue trascendental su presencia e influencia en la producción de conocimiento, en la formación de recursos humanos y en la consolidación de varias líneas de investigación, a través de colaboraciones y visitas científicas al IMASL a lo largo de más de 30 años.

Recordemos que, en mayo de 1992, el Consejo Superior de la Universidad Nacional de San Luis le otorgó al Profesor extranjero el grado académico de Doctor Honoris Causa.

Con una trayectoria de más de 70 años consecutivos, Harold logró un liderazgo indiscutido en el mundo de la ciencia y un gran respeto entre sus colegas, como resultado de su colosal experiencia en Química Experimental y Teórica, Física y Matemáticas, e investigación en Química de Proteínas. Una producción científica de más de 1.300 trabajos publicados y más de 120 estudiantes graduados, postdoctorales y visitantes científicos en su laboratorio, son testigos de estos logros.

El profesional fue un destacado biofísico estadounidense y profesor emérito de George W. University. Scheraga es considerado como un pionero en biofísica de proteínas y fue especialmente influyente en el estudio de la solvatación de proteínas y el efecto hidrofóbico en lo que se refiere al plegamiento de proteínas.

Harold recibió su Ph.D. de la Universidad de Duke en 1946. Se unió a la Facultad de Cornell como instructor en 1947 y se convirtió en profesor titular en 1958. Se desempeñó como jefe del departamento de química de 1960-1967. A través de su investigación, financiada por el Instituto Nacional de Salud durante sesenta años, Scheraga publicó más de 1.300 artículos científicos y 2 libros. Recibió 35 premios y honores por su trayectoria y fue miembro de la American Chemical Society, National Academia de Ciencias y la Academia Americana de Artes y Ciencias, además de ser Doctor Honoris Causa de las Universidades de San Luis (Argentina), Gdansk (Polonia), Iowa (USA), así como del Technion (Instituto de Tecnología Isaraeli).

En esta oportunidad, decidimos recordarlo con los testimonios de dos docentes de la Facultad de Ciencias Físico Matemáticas y Naturales e investigadores del Instituto de Matemática Aplicada San Luis (IMASL), quienes lo conocieron y fueron testigos de su aporte científico, material y humano hacia el Instituto.

 El Dr. Sergio Favier es el actual director del IMASL y conoció a Abraham Sheraga en 1993.

– ¿Cómo fue su primer contacto con él?

-Estaba arreglando mis cosas para hacerme cargo de una beca externa en Estados Unidos. Harold estaba de visita por San Luis y me lo presentó Jorge Vila. Fue muy importante para mi haber recibido su cálido mensaje de felicitación. Fui testigo del desarrollo científico y humano que provocó su persona en un área del IMASL.

– ¿Por qué fue importante su colaboración para el Instituto?

-Con su envergadura fue de importancia el sólo hecho de incluir a la institución en su biografía. Además de la donación de equipamiento que hoy alberga el IMASL, fue formador científico de Jorge Vila y a través de él partícipe necesario de una destacada área en el Instituto como lo es la Bioinformática Estructural.

– ¿En qué consistió esa donación?

– Le debemos mucho equipamiento informático que en ésas épocas eran inalcanzables para nosotros. Muchas herramientas fueron el inicio del clúster de computadoras del IMASL. Herramienta que mantenemos hoy y fue fundamental para para el desarrollo de la investigación aplicada que se realiza en el Instituto.

Por su parte el Dr. Jorge Vila, ex-director del IMASL, recordó su experiencia en la investigación junto a Harold.

-¿Cómo recuerda a Abraham Scheraga?

– Podría resumirlo diciendo que fue un gigante en la ciencia, con enormes cualidades humanas como maestro, colega y amigo. A lo largo de más de 30 años de colaboración científica, siempre sentí por él un enorme respeto como persona y como científico. Con orgullo, puedo decir que este sentimiento fue mutuo. 

– ¿Qué tipo de equipos donó al Instituto?

-Las donaciones del equipamiento fueron, en su momento, numerosas y muy importantes para el IMASL porque no estaban al alcance de los presupuestos que manejábamos. El equipamiento donado fue, fundamentalmente material de computación que ya es, naturalmente, obsoleto y no existe. Solo por dar algunos ejemplos de estas donaciones puedo mencionar las siguientes: 3 computadoras Silicon Graphics con anteojos estereográficos, monitores, Hardware y Sofware para visualización tridimensional (en 1996, un equipamiento inédito en el país), Software de visualización (con licencia perpetua) para el modelado de peptidos, proteinas y acidos nucleicos, Software para compilación de programas científicos en lenguaje Fortran, C, C++, etc., unidades de CPU para el cluster Beowulf del IMASL, Libros, etc. Pero no solo equipamiento fue el resultado de esta colaboración sino también algo de un valor incalculable en ciencia: libre acceso, personal y para uso de nuestro grupo de investigación, a las (17) bibliotecas de la Universidad de Cornell que poseen hoy, en su conjunto, 675.470 revistas y 7.858.820 libros en ciencias, humanidades y artes. 

– ¿Compartió varias investigaciones con él?

– Publiqué alrededor de 70 trabajos en colaboración con Harold Scheraga. Un resumen de ese listado puede encontrarse en el siguiente link de ORCID ( https://orcid.org/0000-0001-7557-9350 )

– ¿Sobre qué temáticas investigaron?

-Los trabajos en colaboración con Harold Scheraga, desde 1989, fueron sobre temas muy variados y me resulta muy difícil limitarlos a un solo campo del conocimiento pero, en general, tienen que ver con Biofísica de Proteínas. Durante ese periodo trabaje, fundamentalmente, en los siguientes temas de investigación: 1. Cálculo conformacional de estructuras de péptidos y proteínas; 2. Predicción de la estructura nativa de proteínas usando métodos ab initio; 3. Desarrollo de métodos, basados en principios de la mecánica cuántica, para validar/determinar/refinar con exactitud estructuras proteicas determinadas por Resonancia Magnética Nuclear o por Cristalografía de Rayos-X; 4. Desarrollo de métodos, basados en conceptos de la físico-química y la termodinámica estadística, que sean rápidos, eficientes y exactos para el cálculo de energías libres de solvatación en proteínas y glicoproteínas; 5. Parametrización de campos de fuerzas de todos los átomos, para ser usado en cálculos conformacionales en simulaciones de moléculas biológicas.