Desarrollo de Materiales Porosos para aplicaciones energéticas y medioambientales

En el marco del “Ciclo de entrevistas a Investigadores/as directores/as de Proyectos/Laboratorios de la Facultad” hoy dialogamos con el Dr. Karim Sapag, director del Proyecto DESARROLLO DE MATERIALES POROSOS PARA APLICACIONES ENERGÉTICAS Y MEDIOAMBIENTALES del Departamento de Física.

El Dr. Sapag terminó la Licenciatura en Física en el año 1991 y su Trabajo Final contó con la dirección del Dr. Pereyra, en el grupo dirigido por el Dr. Zgrablich, en temas de Simulación Molecular de difusión superficial utilizando el método de Monte Carlo.

En ese entonces todo el grupo utilizaba esta metodología, teórica-computacional, pero el director del grupo planteó la necesidad de comenzar a incorporar temas experimentales y le propuso postularse a una beca. En 1992 el investigador se trasladó a España para cursar un doctorado en Ciencias, específicamente en la parte experimental, estudiando la síntesis, caracterización y aplicación de materiales porosos en procesos que utilizan Adsorción y Catálisis.

Realizó su trabajo de investigación en el Instituto de Catálisis y Petroleoquímica del Consejo Superior de Investigaciones Científicas de España, mientras que la parte académica fue en el Departamento de Química-Física Aplicada de la Facultad de Ciencias de la Universidad Autónoma de Madrid.

En 1997 regresó a San Luis y se reincorporó al mismo grupo de partida para comenzar un largo camino con el apoyo de los Dres. Zgrablich y Riccardo. Tuvo que ver con armar desde lo más pequeño hasta lo más importante de lo que actualmente es el Laboratorio de Sólidos Porosos (LabSoP).

Sobre los comienzos, el Dr. Sapag recordó: “Fueron en un sector del Departamento de Física, el antiguo obrador, sin ventanas, un poco rústico y no muy seguro, en la zona de estacionamiento interno de la Escuela Normal Mixta. En ese lugar tuve un gran apoyo de varios profesores de la Facultad de Química, Bioquímica y Farmacia, quienes me asesoraron y me brindaron parte de su conocimiento para lograr el objetivo de desarrollar un laboratorio experimental”.

¿Por qué fue importante su formación en España para hacer su camino de investigador?

Me permitió tener una sólida conexión con investigadores de Iberoamérica, la cual fue muy importante y supe aprovechar, haciendo colaboraciones internacionales y formando recursos humanos, con importantes resultados. Al poco tiempo, el crecimiento del laboratorio empezó a superar el espacio que teníamos y, a través del CONICET y la ANPCyT conseguimos financiamiento para construir en el Bloque II el actual laboratorio, inaugurado en el año 2016 por el presidente del CONICET y autoridades de la UNSL. Este laboratorio cuenta con 150 metros cuadrados de superficie y equipamiento de alto nivel científico.

¿Cómo está formado su equipo de trabajo?, ¿Cuál es la formación de grado y cómo se unieron al laboratorio?

Mi labor en el LabSoP se centra fundamentalmente en la investigación y la formación de posgrado. Desde mi regreso he dirigido o codirigido 2 trabajos finales de carrera (Tesinas), uno en química y otro en física, 14 maestrías y 15 doctorados, estos dos últimos con temas de Física, Química e Ingenierías. He sido director o codirector de 5 investigadores de la carrera del Investigador Científico, teniendo en estos momentos 4 investigadores más a cargo. Actualmente el equipo de trabajo del LabSoP está conformado por mis discípulos, algunos de los cuales han pasado por todas las etapas de formación bajo mi dirección y que a su vez también están formando recursos humanos. El LabSoP posee en su planta estable tres Investigadores CONICET, dos Becarios Postdoctorales, tres Becarios doctorales y un Técnico profesional.  La mayoría de ellos son ingenieros químicos, hay un Licenciado en Física y otro en Química. Varios son extranjeros, ya nacionalizados y se unieron al laboratorio desde sus comienzos de formación científica. Cuando comencé a formar Recursos Humanos la masa crítica nacional en el ámbito que quería desarrollar era muy baja y me costaba conseguir becarios nacionales. La mayoría de los becarios eran recomendados por profesores de relevancia conocidos a través de las redes Cyted, o en congresos, cursos, etc.

¿Cuál es la dinámica del trabajo en su equipo?

La dinámica se fue construyendo con el paso del tiempo y con la incorporación de técnicas y equipos. Dos estrategias siempre fueron promovidas, la primera la movilidad entre laboratorios, tanto nacionales como extranjeros y la segunda la formación de recursos humanos, creando un importante ámbito de camaradería en el Laboratorio. Un tema para destacar es la interdisciplinariedad, donde predominan temas de la fisicoquímica de materiales, trabajando además con ingenieros civiles, biólogos, microbiólogos e ingenieros ambientales, entre otros. Contamos con tres líneas, una dirigida por la Dra. Barrera en Adsorción, otra en catálisis dirigida por el Dr. Villarroel y una tercera dirigida por mí, en la síntesis y caracterización de materiales. No son líneas estancas, sino que la interacción es plena, donde aprovechamos la sinergia que naturalmente se creó para trabajar juntos. Los grandes ejes de interés son Energía, Ambiente y Salud.

Actualmente se desarrollan diferentes temáticas de investigación en físicoquímica aplicada en su laboratorio. Una de ellas está relacionada con la manipulación del hidrógeno, ¿Puede comentarnos qué características tiene esta línea de investigación y en qué casos puede aplicarse fuera de un laboratorio?

En la mayoría de nuestros estudios se involucra la física y la química en forma conjunta, en particular en el desarrollo de materiales porosos para ser aplicados en procesos mediante Adsorción y Catálisis. Nuestro grupo viene trabajando con hidrógeno desde sus comienzos, en particular usando esta molécula para la producción más centrada en combustibles sintéticos obteniendo productos más limpios que los obtenidos del petróleo. En este tema se comenzó con la hidrogenación del monóxido de carbono, reacción catalítica denominada “Fischer-Tropsch” donde los materiales desarrollados mejoran la eficiencia de la producción. Otra línea más actual de uso del hidrógeno es en su reacción catalítica con el dióxido de carbono, donde materiales porosos son utilizados para la obtención de hidrocarburos de alto valor agregado, como lo son algunos alcoholes. Hoy el hidrógeno es considerado el vector energético del futuro, donde su uso en la producción de electricidad no genera contaminantes. En este sentido, nuestro país tiene importantes proyectos de inversión para su producción, en particular de “hidrógeno verde”, el cual se produce sin contaminar. En el LabSoP estudiamos la posibilidad de almacenar esta molécula en adsorbentes porosos para su posterior uso, tecnología que aún no está desarrollada a nivel industrial pero que se presenta como muy interesante. Todos estos estudios son a nivel laboratorio, pero recientemente hemos contactado con tecnólogos de Y-TEC, con quienes hemos comenzado a plantear colaboraciones para desarrollar en mayor profundidad estos temas y tender al desarrollo tecnológico de lo obtenido.

Es importante resaltar que la manipulación del hidrógeno no es peligrosa ni difícil de trabajar porque es muy liviano y rápidamente se difunde por lo que es muy difícil que llegue a concentraciones explosivas, donde además se necesita una chispa. Lo que complica su almacenamiento, es su gran difusividad por lo que los materiales porosos desarrollados necesitan tener poros muy estrechos, del tamaño de unas pocas moléculas de hidrógeno. Por supuesto que en el laboratorio tenemos las precauciones pertinentes ya que trabajamos con hidrógeno de alta pureza y poseemos una serie de detectores que se activan cuando las concentraciones son mucho menores a las peligrosas, en caso de fugas.

También trabajan en la generación de hidrocarburos con técnicas que reducen la emisión de gases contaminantes. Con el auge de los autos eléctricos que conllevan a una potencial contaminación mucho mayor debido a la manipulación de baterías de litio, ¿Cómo cree Ud. que las investigaciones que realizan con hidrocarburos puedan afectar la industria automotriz?

En la industria automotriz, los hidrocarburos sintéticos “más limpios” pueden ser una alternativa para motores de combustión, pero su producción en gran escala es mucho más costosa que usando petróleo, por lo que podrían ser usados en motores de pequeño porte o para obtener productos derivados con mayor valor agregado para otras aplicaciones. Entre los combustibles más limpios frente a las naftas para la industria automotriz está el gas natural, donde nos centramos en su posibilidad de almacenamiento en materiales porosos, mejorando el proceso actual del gas natural comprimido. Este tema es importante en nuestro caso ya que Argentina tiene una de las mayores flotas del mundo de gas natural comprimido.

Para los autos eléctricos hay varias alternativas, una es el uso de las baterías de Litio, que es la más utilizada y que tiene consecuencias importantes de contaminación después de su desgaste, seguramente éstas se mantengan en los sistemas móviles de menor tamaño, como celulares, sistemas que requieren baterías de menor porte y que su recuperación puede ser más sencilla.  La alternativa más interesante para los autos eléctricos es producir “hidrógeno verde”, que se puede obtener por métodos no contaminantes como electrólisis del agua, y a partir de éste mediante lo que se denominan pilas de combustible, producir electricidad, cuyo residuo es agua. Esta tecnología ya está en marcha, pero el hidrogeno que se usa en general no es “verde” y está almacenado a 700 bares en tubos parecidos, pero más robustos que los del GNC. Nuestro aporte es en la mejora del sistema de almacenamiento, después de su producción y antes de su uso.

Otra línea de investigación aplicada que están desarrollando se vincula con la liberación controlada de medicamentos. Esta línea puede tener un gran impacto en la industria farmacéutica, ¿Puede contarnos en qué consiste esta investigación y el estado de avance de la misma?

El uso de medicamentos ha tenido un importante efecto en prolongar la expectativa de vida de la gente, pero aparecen importantes efectos secundarios. En muchos casos, el problema es que la cantidad de dosis suministrada en cada toma y la frecuencia, tienen que ser mayores a la necesaria. El medicamento tiene que llegar a la zona de afección en una cierta cantidad y con una rapidez controlada, pero la mayor parte se pierde en el camino por lo que se suministran mayor dosis que las necesarias. Además de los efectos secundarios, esto repercute en la contaminación por la excreción, lo que es difícil de controlar. Así por ejemplo el exceso de antibióticos eliminados en sistemas acuosos no sólo ha influido en otras especies, sino que además ha permitido la aparición de “superbacterias” resistentes a esos antibióticos, que generan un peligro potencial en el desarrollo de nuevas enfermedades. Los materiales porosos, que tengan biocompatibilidad con el organismo, pueden ser vehículos para llevar protegidos los medicamentos a la zona de entrega y controlar su liberación para que lleguen las dosis necesarias para el tratamiento. Desarrollamos materiales porosos de sílice y de carbón, donde estudiamos su capacidad de carga, por adsorción, su resistencia a los ataques del sistema gástrico y su liberación controlada (desorción) en las condiciones de acidez y temperatura del organismo. De esta manera se busca mejorar las condiciones actuales, siendo más eficiente en el tratamiento y contaminando menos. En esto trabajamos con el grupo de Control de Calidad de Medicamentos de la UNSL, quienes nos aportaron sus conocimientos sobre los medicamentos y las condiciones en las que actúan, comenzamos los estudios en conjunto. Seleccionamos la cefalexina, un antibiótico de amplio uso provisto por Laboratorios Puntanos SE y continuamos los estudios con un grupo de la Universidad de Granada, España, donde con una beca Carolina de casi un año se realizaron trabajos de carga y liberación controlada de la cefalexina en materiales porosos y se sumaron estudios de biocompatibilidad con un grupo de Italia. Ello dio como fruto una tesis doctoral en Química e importantes publicaciones. Estos estudios son todos a nivel laboratorio, y pueden ser la base de una transferencia al sector farmacéutico, para un posible desarrollo tecnológico.

El Laboratorio tiene una gran cantidad de equipos, ¿Cuál es el impacto y la importancia de esos equipos en el desarrollo de sus trabajos?, ¿Los integrantes del laboratorio pueden mantener esos equipos en funcionamiento a lo largo del tiempo?

El LabSoP tiene una gran cantidad de equipos, para la síntesis, caracterización y estudio de algunas aplicaciones en catálisis y adsorción. El impacto que hemos tenido ha sido importante en el sistema científico, con el desarrollo de tesis y de colaboraciones con muchos grupos del país y del extranjero. Permanentemente se tienen pasantes y colaboraciones con grupos de diversos centros científicos. El impacto a nivel académico ha sido muy importante, ya que fue una temática para la Maestría en Ciencias de Superficies y Medios Porosos y ahora de la nueva Maestría, recientemente acreditada A por la CONEAU, en Ciencias de Materiales. Muchos de los equipos están en funcionamiento desde la creación del LabSoP, porque hemos conformado un importante mecanismo de mantenimiento que hace que siempre podamos repararlos, aunque no en el tiempo que nos gustaría, por los problemas económicos que surgen. También hemos sido bastante atentos y activos frente a las convocatorias que se publican para conseguir los fondos necesarios. Recientemente adquirimos un equipo de alta gama en el estudio de la química superficial por espectroscopia de fotoelectrones de rayos-X, que se encuentra en el Laboratorio de Fisicoquímica de Superficies, ya que ellos tienen la experiencia en el manejo de este. El trabajo colaborativo, la apertura para el uso de los equipos y el mantenimiento han sido la clave de nuestro desarrollo.

¿Qué tipo de cooperaciones y vínculos tienen actualmente con instituciones argentinas y extranjeras?

Tenemos una amplia vinculación con grupos nacionales y extranjeros.  A nivel local además de colaborar con los distintos grupos del INFAP y del Dpto. de Minería de nuestra facultad, tenemos colaboración con el INTEQUI, el INQUISAL y la Facultad de Química, Bioquímica y Farmacia de la UNSL.

A nivel nacional hemos colaborado con grupos de la Universidad Tecnológica Nacional, Regionales Córdoba, Buenos Aires y Mendoza; con las Universidades Nacionales del Comahue, Salta, Litoral, Córdoba, Buenos Aires, Mar del Plata, Jujuy, San Juan, Chaco Austral, Río Cuarto, La Plata, con el Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy, conocido como Instituto del Litio y el Instituto Balseiro, entre otros.

Recientemente presentamos un Proyecto con nuevas colaboraciones nacionales, con el Instituto de Investigaciones en Ciencia y Tecnología de Materiales de la Universidad Nacional de Mar del Plata y el Instituto de Nanociencias de la Universidad Nacional de San Martín, donde además hemos incorporado un investigador residente en EE. UU., mediante el Programa Raíces.

A nivel internacional, colaboramos con grupos españoles de la Universidad Pública de Navarra, Málaga, Granada y Alicante; Southern Illinois University y Missouri University, en USA; University of Provence, University of New Orleans, en Francia; Universidad Federal de Lavras, Minas Gerais, do Rio Grande do Norte y de Ceará, en Brasil; Universidad de los Andes en Colombia; Universidad Católica de Uruguay; Universidad Autónoma Metropolitana de México, el Instituto Potosino de Investigación, San Luis Potosí, México, entre otras.

Con todos estos centros se han dirigido y se dirigen tesis, se han realizado y se realizan pasantías y se ha publicado una importante cantidad de trabajos.

¿Cuál fue el trabajo que mayor impacto ha tenido en su carrera?

Además de desarrollar diferentes materiales porosos para diversas aplicaciones, en el LabSoP se profundizan estudios de caracterización textural de medios porosos, mediante adsorción de vapores. Este segundo punto nos ha situado en un nivel de referencia a nivel internacional, donde los trabajos publicados en esta área están siendo muy aceptados, teniendo un creciente nivel de citas y es por lo que muchos grupos nos contactan para colaborar o solicitarnos apoyo en la interpretación de resultados. De todas maneras, los trabajos con mayor impacto que he tenido hasta el momento son dos, en los cuales en base a carbones uno de ellos y el otro en base a arcillas, desarrollamos un material adsorbente magnético para descontaminar agua. El impacto es sobre todo en su posible aplicación, lo que condujo a una patente en Brasil, estos trabajos llevan más de 650 citas uno y cerca de 500 el otro, lo que es un número relativamente alto para nuestra área.

Los aportes en la propuesta de modelos para caracterización son mucho más nuevos y con los actuales investigadores de laboratorio, y llevan más de 130 citas.

¿Cuál es su visión del campo de la fisicoquímica aplicada?

Si echamos un vistazo a los temas que se hacen en el INFAP, muchos de ellos están en este campo. Al ser aplicada, lo que tenemos que tratar es de resolver problemas que sean de posible transferencia al sistema productivo. La fisicoquímica aplicada tiene mucho que aportar, donde uno va aprendiendo constantemente, por lo tanto, es muy importante generar experiencia en una temática y a partir de allí abrirse a resolver problemas con las herramientas que tiene. Entre los temas más candentes en estos momentos donde la fisicoquímica aplicada puede aportar, están las áreas de Energía, Salud y más aún en temas Ambientales que son cambiantes y relevantes. Si revisamos las últimas décadas, vemos claramente cómo van cambiando los paradigmas, donde, por ejemplo, desde el comienzo de mi actividad científica hasta estos tiempos, puedo enumerar algunos de estos cambios. Empezamos con limpiar y mejorar la calidad de los combustibles provenientes del petróleo y a la par buscar alternativas, porque éste se iba a agotar. Después nos centramos en el desarrollo de catalizadores para los coches, para disminuir esos problemas de contaminación y con incidencia directa en la salud, como era el smog atmosférico. Luego apareció el tema de la capa de ozono y últimamente la atención se centra en el dióxido de carbono, que proviene fundamentalmente de la combustión de los hidrocarburos provenientes del petróleo. Empiezan a aparecer biocombustibles y el gas natural que es menos contaminante que las naftas. Pero ello no es suficiente y se relanza la posibilidad de motores eléctricos donde el hidrógeno aparece como la molécula estrella. En estos temas siempre aparece la necesidad de materiales que mejoren los procesos y los materiales porosos siempre han tenido un papel relevante, por lo que vemos que es una temática de pasado, presente y futuro. Además, estos materiales pueden usarse en otros procesos, como descontaminación de aguas, de suelos, como sensores, en temas de salud y como componentes de baterías, de pinturas, etc. Considero muy importante para quienes hacemos ciencia, que estemos continuamente al día, conociendo las necesidades que aparecen, así como las herramientas nuevas que nos sirven para actualizar y orientar nuestras investigaciones para resolver los temas más importantes para nuestra región y el mundo.

¿Cómo ve la expansión de su laboratorio en los próximos años?

Consideroprioritario profundizar las líneas con pequeñas modificaciones acorde a los temas estratégicos que van apareciendo. O sea, seguir expandiendo las capacidades sin salirse de la temática, pero no hacer siempre lo mismo. Por ejemplo, incorporar nuevas metodologías en la síntesis de materiales que es nuestro fuerte; que sean más eficientes, más sustentables, que utilicen procesos amigables con el medio ambiente. Eso, por un lado, y por otro en cuanto a las aplicaciones, profundizar el contacto con las empresas con el fin de transferir o desarrollar en conjunto tecnologías de aplicación industrial. En este camino, ya estamos en contacto con una pequeña empresa que produce carbones porosos para descontaminar medio ambiente, con diversas aplicaciones en aire y agua. Por otro lado, hemos entablado relaciones con el INTI, mediante proyectos y desarrollos, donde ha comenzado su actividad un investigador que estuvo trabajando por largo tiempo en el LabSoP y continuamos en colaboración permanente. Él está abocado a la producción de hidrógeno mediante procesos electrocatalíticos, donde nuestro aporte en algunos materiales es importante.  A su vez, hemos comenzado una comunicación con la empresa Y-TEC, para estudiar temas de interés energético, particularmente en el almacenamiento de gas natural e hidrógeno, donde con nuestra experiencia científica y el apoyo de tecnólogos, nos proponemos producir innovación con desarrollos tecnológicos. Para esta línea tenemos en los planes trabajar más profundamente con los vinculadores y gestores tecnológicos, para que nos ayuden a transitar este camino. Además, estoy en conversaciones con una importante empresa que fabrica instrumentos científicos que son de nuestro interés, planteando la idea de instalar un centro de capacitación, técnico- científica, que nos puede favorecer sustancialmente en la actualización de equipos de gran porte, siendo muy beneficioso en todo sentido.

Por último, me gustaría resumir nuestro trabajo en algunos principios que nos movilizan:

  • que con entusiasmo y tesón se pueden armar nuevas líneas, siempre hay una ventanilla para ayudar en eso;
  • que la interdisciplinaridad da sus frutos y abre fronteras;
  • que las colaboraciones son importantes, porque ayudan a crecer;
  • que se puede trabajar siempre en la misma temática, pero hay que ampliarla a las necesidades actuales;
  • que en temáticas aplicadas hay que buscar el desarrollo tecnológico;
  • que la formación de recursos humanos y el aporte en la academia es un camino a recorrer para poder hacer todo lo demás.

Entrevista: Francisco Vidal Sierra

Fotos: Prensa UNSL